当前位置:主页 > 公司新闻 >

紫外激光聚焦在三个专门设计的三明治型非线性

  2016年底,潘建伟团队同时实现了10个光量子比特和10个超导量子比特的纠缠,刷新并一直保持着这两个世界记录。
 
  通过多年技术攻关,潘建伟团队自主研发了高稳定单光子多自由度干涉仪,实现了不同自由度量子态之间的确定性和高效率的相干转换,完成了对18个量子比特的262144种状态的同时测量。在此基础上,研究组成功实现了18个光量子比特超纠缠态的实验制备和严格多体纯纠缠的验证,创造了所有物理体系纠缠态制备的世界纪录。
 
  具体技术:实验证明18个量子比特GHZ纠缠
 
  对多个粒子的多个自由度实现完全控制是量子信息处理的基本能力。我们通过同时利用6个光子的3个不同自由度,包括它们的路径、偏振和轨道角动量,实验证明了18个量子比特Greenberger-Horne-Zeilinger(GHZ)纠缠。
 
  研究人员开发了高稳定性的干涉仪,用于光子的不同自由度之间的可逆量子逻辑运算,其精度和效率接近于一,可以同时读出18个量子比特状态产生的218=262144种结果组合。测量到的量子态保真度为0.708±0.016,证明全部18个量子比特的真实纠缠。
 
  用于创建和验证由6个光子和3个d.o.f组成的18量子比特GHZ态的方案和实验装置。图1:用于创建和验证由6个光子和3个d.o.f组成的18量子比特GHZ态的方案和实验装置。
 
  六光子偏振纠缠GHZ态的产生。中心波长为为788nm,脉冲持续时间为140fs,重复频率为80MHz超快激光聚焦于三硼酸锂(LBO)并向上转换为394nm。
 
  紫外激光聚焦在三个专门设计的三明治型非线性晶体,每个晶体由两个2毫米厚的β-硼酸钡(BBO)一个HWP组成,产生三对纠缠光子。
 
  在每个输出中,使用了不同厚度和方向的两块YVO?晶体,以对双折射效应进行空间和时间补偿。这三对纠缠光子结合在两个偏振分束器(PBS)上,产生六光子偏振纠缠的GHZ态。多个量子比特的相干操纵和纠缠态制备是发展可扩展量子信息技术,特别是量子计算的最核心指标。量子计算的速度将随着可操纵的纠缠比特数目的增加而指数级提升。但要实现多个量子比特的纠缠,需要进行高精度、高效率的量子态制备和独立量子比特之间相互作用的精确调控。同时,随着量子比特数目的增加,操纵时所带来的噪声、串扰和错误也随之增加。这对量子体系的设计、加工和调控要求极高,成为量子纠缠和量子计算发展的巨大挑战。
 
  过去20年,潘建伟及其同事一直在国际上引领着多光子纠缠和干涉度量的发展,并在此基础上开创了光子的多个自由度的调控方法。2015年,通过实现对光子偏振和轨道角动量两个自由度的量子调控技术和单光子非破坏测量,潘建伟、陆朝阳研究组首次实现单光子多自由度的量子隐形传态,相关成果被英国物理学会新闻网站“物理世界”选为“国际物理学年度突破”。
 
  
点击次数:  更新时间2018-07-03  【打印此页】  【关闭
友情链接:

0